PHYSICAL REVIEW E

VOLUME 53, NUMBER 1

JANUARY 1996

Enhanced diffusion upon approaching the kinetic glass transition
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The apparent failure of the Stokes-Einstein law in strongly supercooled liquids has provoked recent
experimental and theoretical studies. In an attempt to explain this phenomenon, we study the diffusion
in a dynamically disordered continuum in which small, compact regions of greater diffusivity appear and
disappear in time. Within the confines of the model, we show that a systematic increase in the ratio of
the diffusivity of fluidized domains to the background diffusivity appears to be the single most important
factor in explaining the deviation from the Stokes relation.

PACS number(s): 64.70.Pf, 66.10.Cb, 05.60. +w

I. INTRODUCTION

For many liquids under normal conditions, the transla-
tional diffusion constant of a tagged particle obeys the
Stokes-Einstein law relatively well [1,2],

= (1
bmmR ’

where k, is Boltzmann’s constant, T is the temperature,
m is the transverse viscosity of the fluid system, R is the
radius of the diffusing particle, and b is either 4 or 6 de-
pending upon the boundary conditions at the surface of
the Brownian particle. From a molecular point of view,
the conditions for which Eq. (1) ought to be valid corre-
spond to the motion of a large, massive particle immersed
in a fluid of small, light molecules. More precisely, the
Stokes law should apply in the limits (m /M )—0 and
(§/R)<<1, where m and M are the masses of the fluid
and Brownian particle, respectively, and £ is the correla-
tion length for fluid correlation functions in the absence
of the tagged particle [3-5]. Therefore, it is remarkable
that the Stokes-Einstein formula works reasonably well to
relate the diffusion coefficient of a constituent particle or
a small tracer molecule to the shear viscosity of the liquid
medium.

However, recent experimental and simulation data on
strongly supercooled ‘““fragile” glass-forming liquids have
shown significant deviations from the Stokes-Einstein re-
lation [6—-11]. Specifically, the Stokes-Einstein law works
well until a particular temperature that is identified as T,
in the glass transition literature [12—14]. T, appears at
about 1.37; (the glass transition temperature) where the
viscosity 7 is 100—-1000 P, corresponding to relaxation
times in the mesoscopic regime (107 !''-107° s). The
temperature dependence of the viscosity changes from an
Arrhenius to a Vogel-Fulcher-like dependence at T.,.
Below this critical temperature, the prediction of ordi-
nary incompressible hydrodynamics underestimates the
diffusion coefficient by as much as a factor of 10? near the
kinetic glass transition. According to mode-coupling
theories of the glass transition, this critical crossover
behavior is associated with the smearing out of the ideal
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transition due to activated hopping processes [14].
Specifically, hopping presumably corresponds to activat-
ed, correlated jump motions of molecules which restore
ergodicity via an extremely slow relaxation of the under-
lying metastable structure.

Molecular dynamics simulations of tagged particle
motion have confirmed that diffusive behavior changes
from liquid- or Brownian-motion-like to jump diffusion
below 7. [8—10]. While diffusion occurs continuously in
a normal and slightly supercooled liquid, particles near
T, remain trapped for hundreds of Einstein periods be-
fore hopping to neighboring sites. Such jumps are rare
events, and molecules experience on average only a few
jumps during the entire duration of the molecular dy-
namics (MD) run. Deviation from normal diffusive
behavior can also be seen from the density autocorrela-
tion function, namely [8]

N
G(B1)=— 3 (8(T;(1)—T;(0)—T1)) . (2)

where 1;(¢) denotes the position of particle i at time ¢.
Hopping behavior is characterized by the presence of a
secondary peak in G, located at approximately the radius
of the diffusing species.

Recent investigators have proposed a ‘“fluidized”
domain model to account for the discrepancy from the
Stokes-Einstein relation [15,16]. In brief, it is postulated
that thermal fluctuations create domains that are tem-
porarily more fluidized than the background. These
domains result from the disentangling of molecules from
more energetically favorable packing geometries, local
fluctuation in the molecular number density, or a com-
bination of both effects. Regardless, these structural exci-
tations allow for greater diffusivity than the solidlike ma-
trix in the surroundings and create the hopping transport
seen in MD experiments.

II. JUMP-DIFFUSION MODEL

We consider a dynamical version of the “two-zone”
model which closely follows Zwanzig’s treatment of per-
colation in a dynamically disordered continuum [17,18].
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In the following, we present a brief summary of the re-
sults of [18] for completeness. Specifically, the diffusion
that occurs in an inhomogeneous medium characterized
by a fluctuating diffusion coefficient D(T,¢) is described
by the equation

0 oy
3 C(r,t)=

V- [D(r,1)VC(T,1)], 3)
where C(T,t) is the concentration of the diffusing parti-
cles. For simplicity, it is assumed that fluctuations in D
occur within compact spherical domains of radius o with
the fluidized regions of diffusivity D, (as opposed to D,
of the background). These regions appear and disappear
in time with a relaxation time 7, and, for a given T, the
time independent probability that D is D, (or D,) is p,
(or p,). Quite naturally, a more realistic model should in-
corporate a distribution of domain sizes and a corre-
sponding set of relaxation times.

Using a mean-field approximation, one may focus on a
spherical region of radius o centered at the origin. The
diffusion constant within the sphere fluctuates between
D, and D,, while the diffusion constant outside is taken
to be a constant value D.;. The problem thus reduces to
a coupled set of differential equations where we would
like to determine the dependence of D on the other pa-
rameters of the model. By matching the values and radi-
al derivatives (multiplied by the appropriate diffusion
coefficients) of the steady state solutions in the inner and
outer regions and eliminating constants after some
straightforward algebra, Zwanzig [18] obtains a highly
implicit expression for D ¢
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where a?=1/D 47, B*={D ) /D ,D,7, h; is the spherical
Hankel function of  order WA (x)=[—(1/x)

—(i/x%)]e™), j, is the spherical Bessel functxon of
order 1 [j,(x)=(sinx /x?)—(cosx/x)], and (D)
=pD,+p,D,.

III. RESULTS

The preceding expression can be simplified into a more
manageable form by introducing the definitions of dimen-
sionless variables:
~ 7D,

=D, =7, 5
D, D, - 7 (5)

yielding, as a result,

—D(D—1—(y—1)p,)f(ao)
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where ao=(1/D%)'?,  Bo=([1+(y—1)p,1/yD)"?
f(x)=(2+2x +x2)/(1+x), and g(x)=[2x cothx
—(x%4+2)]/(1—x cothx). It is easy to verify that the
trivial conditions ¥y =1 or p; =0 yield D =1 as a solution.

Next, we choose values for the various parameters of
the model guided by physical intuition gained from MD
simulations. First, we take p, to be small and a constant
with respect to temperature, and we also propose that the
size of the domain can be to a good approximation taken
as a constant with o somewhat larger than R (radius of
diffusing particle). We believe that the probability and
size of these fluctuations show only weak temperature
dependences that can be neglected in our simple model.
The relaxation time of the fluctuations (which is related
to Maxwell’s relaxation time 7,,=7/G ) is expected to
increase dramatically with a decrease in temperature.
However, this rapid rise is tamed since 7 appears in the
dimensionless combination 7D, /0%, where D, decreases
rapidly with the lowering of temperature. In fact, since
D, roughly goes as 75! (or 7 1), 7 is expected to have a
weak temperature dependence, and its slight variation
cannot account for the significant increase of D below T..
A physical interpretation can be given for 7 by writing it
as 7/7,, where 7, is roughly the mean time the diffusing
particle spends within a sphere of radius o with a
diffusivity D,. We expect 7<1 (how small depending on
the size of o) since, on the time scale 7, of the diffusing
species, the fluctuations are fast, which is the same
scenario as for the diffusion of a tagged particle in a
liquid under normal conditions. There is of course
another time scale for diffusion in the fluidized domains,
which is simply 7, /v .

We are thus led to the conclusion that the enhance-
ment of D below 7T, is most likely associated with a
significant increase in ¥ or D, /D,. Figures 1 and 2 show
the variation of D with y given plausible sets of values for
p, and 7. Note in Fig. 2 that a ratio of the order of 10°
for D, /D, gives an enhancement of the effective diffusion
constant by a factor of 10? that is observed near the
kinetic glass transition.

For y not too large, an expansion of D in terms of the
small parameter p, is possible, with the result
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It is also interesting to note that D.—{D)=p,D,
+p,D, as T—0.
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FIG. 1. Plotof D ' vs y for three different values of 7 given
p1=1. The values of 7 are 107}, 1073, and 10" for curves 1,

2, and 3, respectively.

IV. CONCLUSIONS

Within the confines of the model, the above results
should perhaps be expected. Given that the probability
for the appearance of a fluidized domain is small, the
effect of these regions on the effective diffusion constant is
significant only if the diffusivity within the spheres is
much greater than the background diffusion constant.
As a liquid is supercooled below T, particle transport be-
comes increasingly dominated by the appearance of these
fluidized regions that allow much greater mobility than
the solidlike matrix of the surrounding. In a dense liquid,
molecules are temporarily trapped in a ‘“cage” of sur-
rounding molecules. This cage effect introduces time
dependent potential barriers that hinder the relaxation of
the configurational degrees of freedom. Under normal
conditions, these cages have a characteristic lifetime of a
few collision times. However, when a liquid is super-
cooled, particle trapping becomes increasingly more
effective and eventually yields partial localization of par-
ticles within metastable clusters. Structural relaxation
creates domains that are less constricted and allows the
trapped particles to jump to adjacent sites.

Although we have considered a simple, dynamic two-
zone model where the fluctuations in diffusivity are spa-
cially and temporally uncorrelated, we emphasize that
hopping transport is not a strictly local process. From a
molecular perspective, jump diffusion is most likely a
medium assisted process where there is a feedback mech-
anism between short wavelength or local disturbances
and long wavelength fluctuations [14].

Recently, Stillinger and Hodgdon suggested that spon-
taneous fluctuations create large domains of low viscosity
to account for the different behavior of the translational
and rotational coefficients near the glass transition tem-
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FIG. 2. Plot of D ' vs y for curve 3 of Fig. 1, showing a
diffusivity enhancement of the order of 102

perature [16]. The large size of the domains was pro-
posed to account for the continued adherence of the rota-
tional Brownian motion to the Stokes-Einstein-Debye
model for a sphere rotating in a viscous continuum [2].
However, observations from time resolved spectroscopy
of molecular rotation are inconsistent with a model with
large domains [19,20]. In particular, probe rotation was
found to depend significantly upon probe size, with all
probes smaller than the domain size suggested. As men-
tioned previously, it is our view that the most relevant
domain size affecting molecular motion in strongly super-
cooled liquids corresponds to dimensions not significantly
larger than ten times the radius of the diffusing molecule
itself. Obviously, domain sizes smaller than the tagged
species cannot accommodate its passage and can be
neglected, while the creation of larger domains is increas-
ingly less probable, i.e., p; is a decreasing function of the
size 0. The structure of a fluid near T, appears to be
essentially homogeneous on large length scales, and it is
unlikely that large fluidlike domains can have a
significant effect on particle transport. The model used in
this paper is not sufficiently detailed to explain differences
in behavior between translational and rotational motion.
While translational motion may be enhanced by local
density fluctuations, rotational relaxation depends not
only on density but on the symmetry of the arrangement
of host molecules around the rotational probe. Unless
the local density fluctuation is approximately symmetric,
translation and rotation will be affected differently.
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